87 research outputs found

    Monte Carlo Simulation of Long Chain Polymer Melts: Crossover from Rouse to Reptation Dynamics

    Full text link
    We present data of Monte Carlo simulations for monodisperse linear polymer chains in dense melts with degrees of polymerization between N=16 and N=512. The aim of this study is to investigate the crossover from Rouse-like dynamics for short chains to reptation-like dynamics for long chains. To address this problem we calculate a variety of different quantities: standard mean-square displacements of inner monomers and of the chain's center of mass, the recently proposed cubic invariant, persistence of bond-vector orientation with time, and the auto-correlation functions of the bond vector, the end-to-end vector and the Rouse modes. This analysis reveals that the crossover from non- to entangled dynamics is very protracted. Only the largest chain length N=512, which is about 13 times larger than the entanglement length, shows evidence for reptation.Comment: 38 pages of REVTeX, 14 PostScript figure

    On the Dynamics and Disentanglement in Thin and Two-Dimensional Polymer Films

    Full text link
    We present results from molecular dynamics simulations of strictly two-dimensional (2D) polymer melts and thin polymer films in a slit geometry of thickness of the order of the radius of gyration. We find that the dynamics of the 2D melt is qualitatively different from that of the films. The 2D monomer mean-square displacement shows a t8/15t^{8/15} power law at intermediate times instead of the t1/2t^{1/2} law expected from Rouse theory for nonentangled chains. In films of finite thickness, chain entanglements may occur. The impact of confinement on the entanglement length NeN_\mathrm{e} has been analyzed by a primitive path analysis. The analysis reveals that NeN_\mathrm{e} increases strongly with decreasing film thickness.Comment: 6 pages, 3 figures, proceedings 3rd International Workshop on Dynamics in Confinement (CONFIT 2006

    A finite excluded volume bond-fluctuation model: Static properties of dense polymer melts revisited

    Full text link
    The classical bond-fluctuation model (BFM) is an efficient lattice Monte Carlo algorithm for coarse-grained polymer chains where each monomer occupies exclusively a certain number of lattice sites. In this paper we propose a generalization of the BFM where we relax this constraint and allow the overlap of monomers subject to a finite energy penalty \overlap. This is done to vary systematically the dimensionless compressibility gg of the solution in order to investigate the influence of density fluctuations in dense polymer melts on various s tatic properties at constant overall monomer density. The compressibility is obtained directly from the low-wavevector limit of the static structure fa ctor. We consider, e.g., the intrachain bond-bond correlation function, P(s)P(s), of two bonds separated by ss monomers along the chain. It is shown that the excluded volume interactions are never fully screened for very long chains. If distances smaller than the thermal blob size are probed (s≪gs \ll g) the chains are swollen acc ording to the classical Fixman expansion where, e.g., P(s)∼g−1s−1/2P(s) \sim g^{-1}s^{-1/2}. More importantly, the polymers behave on larger distances (s≫gs \gg g) like swollen chains of incompressible blobs with P(s) \si m g^0s^{-3/2}.Comment: 46 pages, 12 figure

    Comparison of Dissipative Particle Dynamics and Langevin thermostats for out-of-equilibrium simulations of polymeric systems

    Full text link
    In this work we compare and characterize the behavior of Langevin and Dissipative Particle Dynamics (DPD) thermostats in a broad range of non-equilibrium simulations of polymeric systems. Polymer brushes in relative sliding motion, polymeric liquids in Poiseuille and Couette flows, and brush-melt interfaces are used as model systems to analyze the efficiency and limitations of different Langevin and DPD thermostat implementations. Widely used coarse-grained bead-spring models under good and poor solvent conditions are employed to assess the effects of the thermostats. We considered equilibrium, transient, and steady state examples for testing the ability of the thermostats to maintain constant temperature and to reproduce the underlying physical phenomena in non-equilibrium situations. The common practice of switching-off the Langevin thermostat in the flow direction is also critically revisited. The efficiency of different weight functions for the DPD thermostat is quantitatively analyzed as a function of the solvent quality and the non-equilibrium situation.Comment: 12 pages, introduction improved, references added, to appear in Phys. Rev.

    Static and dynamic properties of the interface between a polymer brush and a melt of identical chains

    Full text link
    Molecular dynamics simulations of a short-chain polymer melt between two brush-covered surfaces under shear have been performed. The end-grafted polymers which constitute the brush have the same chemical properties as the free chains in the melt and provide a soft deformable substrate. Polymer chains are described by a coarse-grained bead-spring model with Lennard-Jones interactions between the beads and a FENE potential between nearest neighbors along the backbone of the chains. The grafting density of the brush layer offers a way of controlling the behavior of the surface without altering the molecular interactions. We perform equilibrium and non-equilibrium Molecular Dynamics simulations at constant temperature and volume using the Dissipative Particle Dynamics thermostat. The equilibrium density profiles and the behavior under shear are studied as well as the interdigitation of the melt into the brush, the orientation on different length scales (bond vectors, radius of gyration, and end-to-end vector) of free and grafted chains, and velocity profiles. The viscosity and slippage at the interface are calculated as functions of grafting density and shear velocity.Comment: 12 pages, submitted to J Chem Phy

    Static Rouse Modes and Related Quantities: Corrections to Chain Ideality in Polymer Melts

    Full text link
    Following the Flory ideality hypothesis intrachain and interchain excluded volume interactions are supposed to compensate each other in dense polymer systems. Multi-chain effects should thus be neglected and polymer conformations may be understood from simple phantom chain models. Here we provide evidence against this phantom chain, mean-field picture. We analyze numerically and theoretically the static correlation function of the Rouse modes. Our numerical results are obtained from computer simulations of two coarse-grained polymer models for which the strength of the monomer repulsion can be varied, from full excluded volume (`hard monomers') to no excluded volume (`phantom chains'). For nonvanishing excluded volume we find the simulated correlation function of the Rouse modes to deviate markedly from the predictions of phantom chain models. This demonstrates that there are nonnegligible correlations along the chains in a melt. These correlations can be taken into account by perturbation theory. Our simulation results are in good agreement with these new theoretical predictions.Comment: 9 pages, 7 figures, accepted for publication in EPJ

    Nonlinear effects in charge stabilized colloidal suspensions

    Full text link
    Molecular Dynamics simulations are used to study the effective interactions in charged stabilized colloidal suspensions. For not too high macroion charges and sufficiently large screening, the concept of the potential of mean force is known to work well. In the present work, we focus on highly charged macroions in the limit of low salt concentrations. Within this regime, nonlinear corrections to the celebrated DLVO theory [B. Derjaguin and L. Landau, Acta Physicochem. USSR {\bf 14}, 633 (1941); E.J.W. Verwey and J.T.G. Overbeck, {\em Theory of the Stability of Lyotropic Colloids} (Elsevier, Amsterdam, 1948)] have to be considered. For non--bulklike systems, such as isolated pairs or triples of macroions, we show, that nonlinear effects can become relevant, which cannot be described by the charge renormalization concept [S. Alexander et al., J. Chem. Phys. {\bf 80}, 5776 (1984)]. For an isolated pair of macroions, we find an almost perfect qualitative agreement between our simulation data and the primitive model. However, on a quantitative level, neither Debye-H\"uckel theory nor the charge renormalization concept can be confirmed in detail. This seems mainly to be related to the fact, that for small ion concentrations, microionic layers can strongly overlap, whereas, simultaneously, excluded volume effects are less important. In the case of isolated triples, where we compare between coaxial and triangular geometries, we find attractive corrections to pairwise additivity in the limit of small macroion separations and salt concentrations. These triplet interactions arise if all three microionic layers around the macroions exhibit a significant overlap. In contrast to the case of two isolated colloids, the charge distribution around a macroion in a triple is found to be anisotropic.Comment: 10 pages, 9 figure

    Are polymer melts "ideal"?

    Full text link
    It is commonly accepted that in concentrated solutions or melts high-molecular weight polymers display random-walk conformational properties without long-range correlations between subsequent bonds. This absence of memory means, for instance, that the bond-bond correlation function, P(s)P(s), of two bonds separated by ss monomers along the chain should exponentially decay with ss. Presenting numerical results and theoretical arguments for both monodisperse chains and self-assembled (essentially Flory size-distributed) equilibrium polymers we demonstrate that some long-range correlations remain due to self-interactions of the chains caused by the chain connectivity and the incompressibility of the melt. Suggesting a profound analogy with the well-known long-range velocity correlations in liquids we find, for instance, P(s)P(s) to decay algebraically as s−3/2s^{-3/2}. Our study suggests a precise method for obtaining the statistical segment length \bstar in a computer experiment.Comment: 4 pages, 3 figure
    • …
    corecore